Absolute Single/
Multiturn Encoders
PROFIBUS@-DP
Singleturn Type RS-25 (shaft)/RS-33 (Blind hollow shaft)
Multiturn Type RM-29 (shaft)/RM-36 (Blind hollow shaft)

Turck Inc. sells its products through Authorized Distributors. These distributors provide our customers with technical support, service and local stock. Turck distributors are located nationwide - including all major metropolitan marketing areas.
For Application Assistance or for the location of your nearest Turck distributor, call: 1-800-544-7769

Specifications in this manual are subject to change with out notice. Turck also reserves the right to make modifications and makes no guarantee of the accuracy of the information contained herein. Literature and Media questions or concerns?
Contact Marketing Turck USA - media@turck.com

Contents

1 General. 4
PROFIBUS-DP Basics
The Profile Required Characteristics
Protective Functions
2 Start-Up 5
3 General Wiring Instructions. 5
Installation Instructions for RS-485
4 Cable Shielding 6
5 Characteristics of the Multiturn Encoder on the Profibus 7
PNO-Ident-Number
Start Phase of the Encoder on the Profibus
Configuration and Parameterisation Configuration
6 Device Profile - Profile for Encoder V1.1 8
Configuration
7 Profibus Encoder Profile 3062 (Version 1.1). 9
Preset Setting
Speed Values
8 Extended Diagnostics 10

1. Device Profile For Encoders
Class 1 Mandatory For All DP Encoders Class 2 Optional Functionality
9 Initial Start-Up - General Device Settings 11
Node Number (Device Address)
10 Set Station Address (Ssa) * 11
11 External Position Reset 11
12 Profibus Connection Pg 12Supply Voltage
13 Profibus Connection M12 12
Bus termination
14 Installation Notes When Using Housings With Cable Glands: 13
15 Parameterization 13
16 Scaling 14
17 Default Settings On Delivery 18
Encoder Profile
18 General Reset Of The Device 19
19 LED Monitoring During Operation 19Red LED = DiagnosticsYellow LED = BUSGreen LED = Pwr Bus VoltageLED Combinations During OperationGeneral Reset - Switching The Device On With The Set Key Pressed
20 Decimal-Hexadecimal Conversion Table 21

1 General

PROFIBUS-DP basics

This description provides information concerning the implementation of the PROFIBUS-DP transmission protocol in the slave mode in our devices. It should be noted that the extent of the functions described might be limited according to the device or application. With protocol conversions in particular, as a rule fewer functions are used!

The profile required

The link between the decentralized process operation and the central control via the communication system takes place in the lowest hierarchy level on the filed or process bus. At this level, the main requirements are a simple protocol operation and short data transmission times for the communication. This ensures the fastest system reaction time to the dynamic states of the peripherals. In addition to the classic data exchange, the acyclic transmission of parameter, diagnostic and configuration data must be possible, without radically impeding the real-time capability of the bus. This is the only way to guarantee the achievement of good diagnostics and safe operation.

Characteristics

The main task of PROFIBUS-DP is the cyclic transmission of the process data from the control system to the peripheral equipment and vice versa. The access procedure uses the Master-Slave principle. Here in the polling operation a Master communicates with its assigned slave devices one after the other on the bus. A data exchange is initiated by a request telegram and ended by an acknowledgement telegram from the Slave concerned. So, each Slave only becomes active after a call from the Master. This avoids a simultaneous bus access. The hybrid access procedure of PROFIBUS allows a combined operation of several bus masters and even a mixed operation of PROFIBUS-DP and PROFIBUS-FMS within a bus section. However the pre-requisition for this is the correct configuration of the bus system and the unambiguous assignment of the Slave devices to the Masters. PROFIBUSDP distinguishes two types of Master. The Class 1 Master carries out the cyclic transmission of the operating data and supplies the user data. The Class 1 Master can be addressed by a Class 2 Master using certain functions. Direct access to the Slaves is not permitted. The functions are limited to support services such as reading the diagnostic information of the slaves. A Class 2 Master is thus also understood as a programming or diagnostic device.

Protective functions

PROFIBUS-DP is equipped with many protective functions. These ensure safe fault-free communication not only in the harsh environment of the decentralised peripheral equipment, but also in the case of external interference or the failure of one or more stations. Wrong parameter settings are recognized directly, in that stations having the wrong parameters are not integrated in the operating data exchange.
The Master records the failure of any station and indicates this to the user by means of a general diagnostic message.
Any breakdown in the transmission path is detected by the Slave by means of time monitoring and leads to the outputs being switched off.
EMV disturbances are virtually filtered out by means of the difference signal, thanks to the particularly noise-immune RS485 transmission system.
Data transmission errors are recognized thanks to frame and check-sum controls and lead to the retransmission of the telegram.

2 Start-up

Before start up of a PROFIBUS-DP system, unique bus addresses must be assigned to all connected stations, including the master system. This is the only way to ensure unambiguous addressing on the bus. As an option, the station addresses can also be assigned via the bus.
The physical system settings are made using the parameter set of the Master. In addition to the bus address of the Master, this set includes, for example, the baud rate, the time-out delays and the number of repetitions of the transmission. Along with the Master parameter set, a Slave data set must be saved for each Slave to be activated. A data set contains the parameter assignment and configuration data of the Slave and the address indicator for the logical storage of the I/O data. If the parameter sets are present, the master system starts up the slaves one by one, either on the users request or automatically. The first diagnostic cycles identify the slaves on the bus. Only those slaves sending an error-free feedback will subsequently be parametrized with the corresponding data being stored in the master. If diagnostic and parameter cycles have been carried out correctly, configuration cycles follow next. During this process, required data stored in the master and actual configuration data stored I the slave are compared. Only error-free slaves are automatically integrated to the refresh by the master, ready to transfer operating data.

For diagnostic purposes, the Master provides a diagnostic buffer for each slave, which can be read by the user for other purposes. To simplify the diagnostics, a general diagnostic field is kept simultaneously, which shows bitwise whether a Slave has diagnostic data ready or not.

3 General wiring instructions

Installation instructions for RS-485

All devices are connected within a bus structure (line). Up to 32 stations (master or slaves) can be linked together in one segment. The bus is terminated at the beginning and at the end of each segment by an active bus termination (terminating resistors). To ensure disturbance-free operation both bus terminations must always remain powered. The bus termination is provided ready-to-activate in the device of in the connector.
When there are more than 32 stations on the bus, repeaters must be inserted to connect the individual bus segments. The maximum line length depends on the transmission speed - refer to Table 1.
The line length indicated can be extended by means of using repeaters. It is recommended not to connect more than 3 repeaters in succession.

Baud rate (Kbit/s)	9.6	19.2	93.75	187.5	500	1500	12000
Range/Segment	1200 m	1200 m	1200 m	1000 m	400 m	200 m	100 m

Table 1: Range depending on the transmission speed for A-type cable

4 Cable shielding

EN 50170 leaves it up to the user to decide, whether to use shielded or unshielded cable. Unshielded cable is allowed in interfer-ence-free environments. However, the following points argue for systematic use of shielded cable:
a) An area free from interference exists at best inside shielded cabinets. But as soon as this contains other electronic devices such as relays and contactors, then this is no longer guaranteed.
b) The use of unshielded cables requires additional protective measures against overvoltage at the bus signal inputs.

This is why we recommend on principle the use of shielded cables for the bus lines. This recommendation extends also to the possible use of power-supply cables coming from external power sources to the PROFIBUS devices, e.g. for repeaters. Double-shielded cables are particularly suitable for environments with strong EMC interference. In this case, in order to ensure optimal protection, the whole surface of the external shielding (braided shield) and the inner shielding (foil shield) must be connected at both cable ends to the protective earth by means of an earth clip.

Shielding rules

When using a shielded bus cable, it is recommended to connect the shield at both ends to the protective earth using low-induction connections. This ensures the highest possible electromagnetic compatibility (EMC). One exception concerns separated potentials (e.g. in refineries): generally, in these plants, earthing is permitted at one end only.
The connection between the cable shielding and the protective earth is best done using the metallic device housing and the screw terminal of the plug connector. Here it should be noted that discharge via the pin does not represent an optimal solution. To achieve the best EMC, it is better to expose the cable shielding at a suitable location and to connect it to the protective earth (e.g. the metallic cabinet frame) using a low-induction cable link that should be kept as short as possible. This can be done for example with a shielding clip before the bus plug.

Cable specification: A-type cable for PROFIBUS - DP

Surge impedance:
Cable capacitance: Conductor section: Cable type:

Loop resistance:
Signal damping: Shielding:

135 to 165 Ohm, for a measurement frequency of 3 to 20 MHz .
$<30 \mathrm{pF}$ per metre
$>0.34 \mathrm{~mm}^{2}$, corresponds to AWG 22
twisted pair, 1×2 or 2×2 or
1×4 conductors
< 110 Ohm per km
max. 9 dB over the whole length of the cable section
Copper braid shielding or braid shielding and foil shielding

5 Characteristics of the Multiturn Encoder on the Profibus

PNO-Ident-Number

The TURCK Absolute Singleturn/Multiturn Encoder has the PNO-Ident-Number FF40 (Hex). This number is registered at the PNO (Profibus User Organization) as an unique identification. The according GSD-Files are named as follows:

- Multiturn Series TRCKFF40.GSD
- Singleturn Series TRKSFF40.GSD

Start phase of the encoder on the PROFIBUS

When the encoder starts up it is in the 'Baud-Search' state. Once the baud rate has been recognized, it switches to the WAIT_PRM state and waits for the parameter data from the DP-Master. Parametrization is initialized automatically when the DP-Master starts up. The following parameters are transmitted to the encoder: count direction and the measuring length in steps (for more details, see the Encoder Profile from the PNO). When the correct parameter data have been successfully transferred, the encoder switches to the WAIT_CFG state. The PROFIBUS Master then sends a configuration byte to determine the number of inputs/outputs. If the configuration byte is correct, the encoder switches to the state DATA_EXCHANGE.

Configuration and Parameterization

The parameterization, i.e. the transfer of the parameters for count direction, encoder resolution etc., normally occurs within the configuration program for the PROFIBUS Master used. To do this, the type file or GSD (device file) should be copied to the respective directory for type or GSD files. With some programs such as COM PROFIBUS or STEP7 Manager, an update of the internal device list (hardware catalog) must be carried out within the software. For more information about integrating field devices, please refer to the documentation for the software you are using. The two steps described below are normally necessary for integrating and parametrizing the encoder in a Master system.

Configuration

For configuration purposes, i.e. to input the length and type of the I/O on the PROFIBUS, the configuration programme normally provides an input mask (screen), in which - independently of the desired configuration - the identifier has normally already been set as a default, so that only the I/O addresses remain to be entered. Depending on the required configuration that is desired, the encoder allocates a varying number of input and output words on the PROFIBUS.
The following parameters described are also dependent on the required configuration. The GSD device file (e.g. TRCKFF40.GSD) contains five required configurations for PNO Class1 and 2, each with 16- and 32 Bit resolution.

6 Device Profile - Profile for Encoder V1.1

This profile describes a manufacturer-independent and mandatory determination of the interface for encoders. It is defined in the protocol, which Profibus functions are used as well as how they are to be used. This standard permits an open manufacturerindependent bus system.
The device profile is divided into two object classes:
Physical position

Class C1	Basic function
	Absolute function
Class C2	Scaling function
Class C2	Present function
	Output position value

- Class C1 describes all the basic functions, which the encoder should contain.
- Class C2 contains a number of extended functions, which must either be supported by encoders of this class (Mandatory) or which are optional. Class C2 devices thus contain all the C1 and C2 mandatory functions, as well as additional manufacturer-dependent optional functions. An address area is also defined in the profile, which can be reserved for a manufacturer's own proprietary special functions.

Configuration

The configuration programme normally provides an input mask (screen) for parameterisation purposes, i.e. for entering the data for resolution, count direction etc. The individual modules are listed below:

7 configurations are available for the regular operation of the encoder:

- 32 Bit Input/Output, consistent

- 32 Bit Input, consistent
- 16 Bit Input/Output, consistent
- 16 Bit Input, consistent
- MUR=13 Bit and TMR=25 Bit (32 Bit Input/Output, consistent)
- all can combined with Speed (RPM) 16 Bit consistent or Speed (Units/s) 32 Bit consistent

7 Profibus Encoder Profile 3062 （Version 1．1）．

Class 2 32－Bit resolution，Input／Output consistent：

The encoder uses 2 input words and 2 output words，which are each consistently transmitted over the bus．

Class 2 32－Bit resolution，Input consistent：

The encoder uses 2 input words，which are each consistently transmitted over the bus．

Class 1 16－Bit resolution，Input／Output consistent：

The encoder uses 1 input word and 1 output word，which are each consistently tr over the bus．

Class 1 16－Bit resolution，Input consistent：

The encoder uses 1 input word，which is consistently transmitted over the bus．

Combination with：

Class 2 32－Bit resolution，input consistent speed in（units／s）or
Class 2 16－Bit resolution，input consistent speed in（rpm）
The encoder uses max． 2 input words，which are each consistently transmitted over the bus．
Default setting Scaling on， 25 Bit total resolution
Class 2 32－Bit resolu on MUR＝13Bit，TMR＝25Bit：

Preset setting

In＇Class 2＇mode the encoder can be adjusted over the PROFIBUS to any posi on value in the value range of 27 bit or 15 Bit．This is done by se ng the most significant bit（MSB）of the output data（ $2 \wedge 31$ for configuration Class $2-32$ bit or $2 \wedge 15$ for configuration Class 2 － 16 bit）．

The Preset Value that is transmitted in the data bytes $0-3$ is accepted as the postion value with the rising edge of bit 32 （＝bit 7 of data byte 3）．The encoder then continues counting from this position Readjustment is then only possible a er the control bit has been reset．There is no acknowledgment of this action via the inputs．

Speed values

All modules can be combined with the configuration on of an additional Speed value．The input words are increased to a maximum length of 8 bytes（ 64 bit ）depending on the configuration of the speed value．The speed value is signed and depends on the count direction．

Positive values in CW，negative in CCW direction．
Format is in＂Big Endian＂：

Input word		Input word			
Byte 0	Byte 1	Byte 2	Byte 3	Format	Max．
		0	0	RPM	0
		17	70	RPM	6000
		E8	90	RPM	-6000
00	63	FF	$9 C$	Units $/$ s	6553500
FF	9C	00	64	Units $/$ s	-6553500

Speed limits：

$\begin{array}{ll}\text { Singleturn Encoder：} & 600 \mathrm{rpm} \\ \text { Multiturn encoder：} & 12000 \mathrm{rpm}\end{array}$
higher speed shows ffffh as value higher speed shows ffffh as value

8 Extended Diagnostics

1. Device profile for encoders

Class 1 Mandatory for all DP encoders

Function	Octet ${ }^{\circ}$.	Data Type	Name
Data_Exchange	1-4	Unsigned 32	Position Value (input)
Data_Exchange	1-4	Unsigned 32	Preset Value (output)
Data_Exchange	1-4	Unsigned 32	Speed Value (input) (units/s)
Data_Exchange	1-4	Unsigned 16	Speed Value (input) (rpm)
RD_inp	1-4	Unsigned 32	Position Value
RD_inp	1-4	Unsigned 32	Speed Value
Slave_Diag	7	Octet String	External Diagnostic Header
Slave_Diag	8	Octet	String Alarms
Slave_Diag	9	Octet	String Operating Status
Slave_Diag	10	Octet	String Encoder Type
Slave_Diag	11-14	Unsigned 32	Singleturn Resolution
Slave_Diag	15,16	Unsigned 16	Number of Revolution
Set_prm	9	Octet String	Operating Parameters

Class 2 Optional Functionality

Function	Octet \mathbf{N}°
Slave_Diag	17
Slave_Diag	18,19
Slave_Diag	20,21
Slave_Diag	22,23
Slave_Diag	24,25
Slave_Diag	26,27
Slave_Diag	$28-31$
Slave_Diag	$32-35$
Slave_Diag	$36-39$
Slave_Diag	$40-43$
Slave_Diag	$44-47$
Slave_Diag	$48-57$
Set_prm	$10-13$
Set_prm	$14-17$

Data Type	Name
Octet String	Additional Alarms
Octet String	Supported Alarms
Octet String	Warnings
Octet String	Supported Warnings
Octet String	Profile Version
Octet String	Software Version
Unsigned 32	Operating Time
Signed 32	Offset Value
Signed 32	Manufacturer Offset Value
Unsigned 32	Measuring Units per Revolution
Unsigned 32	Total measuring range in measuring units
ASCII String	Serial Number
Unsigned 32	Measuring Units per revolution
Unsigned 32	Total measuring range in measuring units

9 Initial Start-up - General Device Settings

Node number (Device address)

Setting the node number for the address, using both rotary switches and adjust the number to the according address. R1 for the low order addresses, R2 for the high order value.

View: into the opened bus cover

10 Set Station address (SSA) *

* Adjust both rotary switches to position F for software "set station address" support with a Class2 Master.

The software "set station address" support can only be carried out with a Class2 Master.
Default settings after a Power-on is the address 125 (0x7D) for SSA_Support.
Only valid addresses will be stored in a non-volatile memory and are active by now.
The Node number 0 is reserved and must not be used by any node.
The resulting node numbers lie in the range 1...7Dh hexadecimal ($1 . . .125$ decimal).

11 External Position Reset

The device can be set to a reset position by means of the built-in SET key. The resulting position is 0 . The resulting offset between the physical zero position of the disc and the electronic zero position can be interrogated via the extended diagnostics header.

Note:

The device can be set to a reset position by means of the built-in SET key. The resulting position is 0 . The resulting offset between the physical zero position of the disc and the electronic zero position can be interrogated via the extended diagnostics header.

Postion: 0

12 Profibus connection PG

Bus connection with separate power supply and PG cable gland connection

Undo both screws on the bus cover and remove the bus cover from the encoder.
Feed the incoming bus cable through the left cable gland and connect it to the left terminal (B) and terminal (A). Place the cable shield onto the cable gland. If further devices follow in the bus segment:
Run continuing cable through the right cable gland and connect to terminal (B) and terminal (A).

Supply voltage

Run the supply voltage for the encoder through the central cable gland and connect it to the terminals on the left (+V) and (0V). Place the cable shield onto the cable gland.
(see wiring diagram)

Description from left to right

Abbreviation	Description	Direction
B	Profibus	Out
A	Profibus	Out
OV	OVolt Supply	Out
+V	+UB Supply	Out
OV	OVolt Supply	In
+V	+UB Supply	In
B	Profibus	In
A	Profibus	IN

13 Profibus connection M12

Terminal assignment M12 connector version:
Bus in:

Signal :	-	BUS-A	-	BUS-B	Shield
Pin:	1	2	3	4	5

Bus out:

Signal:	BUS_VDC $^{1)}$	BUS-A	BUS_GND $^{1)}$	BUS-B	Shield
Pin:	1	2	3	4	5

1) for powering an external Profibus-DP terminating resistor

Bus termination

The bus termination is set via hardware using both DIP switches on the bus cover on the rear of the encoder.

When the switch is set to 'ON -> the termination is active
If the device represents the final station on the bus, then the loopedthrough Profibus must be actively terminated at both ends with a bus termination resistor between A and B .

Note:

For units without removable bus covers it is necessary to order with the internal termination adjusted for the application, otherwise it will require an external resistor to adapt it accordingly.

14 Installation notes when using housings with cable glands:

Only use approved Profibus cables with suitable shielding as bus or connection cable.

Place the cable shield on the cable gland

15 Parameterisation

In order to carry out a general parameterisation of the device, it is necessary first to select a module from the GSD file (TRCKFF40.GSD).

Example:

With the parameter telegram (except for the 25-Bit configuration) the following can be defined:

- Code Sequence (Octet 9, Bit 0)

- 0 = clockwise
- 1 = counter clockwise

- Class 2 functionality (Octet 9, Bit 1)

- $0=$ no
- 1 = yes

- Scaling enabled (Octet 9, Bit 3)

- 0 = no
- 1 = yes
- Scaling type (Octet 9, Bit 7)
- 0 = Standard (MUR + TMR)
- 1 = Alternative (NDR + TMR)

- Scaling parameter MUR or NDR (Octets 10-13)

- MUR = Measuring Units per Revolution
- NDR = Number of Distinguished Revolutions
- Scaling parameter TMR (Octets 14-17)
- TMR = Total Measuring Range

16 Scaling

Standard Scaling:

- With MUR and TMR
- One revolution is equivalent exactly to MUR = TMR values

Position $_{\text {scaled }}=\left(\left(\text { Position }_{\text {unscaled }} / \text { Singleturn-resolution }\right)^{*}\right.$ MUR) $\%$ TMR

Alternative Scaling:

- With NDR and TMR
- NDR revolutions are equivalent exactly to the TMR values

Position $_{\text {scaled }}=\left(\left(\right.\right.$ Position $_{\text {unscaled }} /($ NDR * Singleturn-resolution $\left.)\right) *$ TMR) \% TMR

1. Code sequence CW

Possible settings:
Increasing clockwise (0) (CW) Increasing counter-clockwise (1) (CCW)

2. Class 2 functionality on

Class 2 must be turned on when scaling is active.

5. Value for Resolution per Revolution MUR

Example: 3600 Steps per revolution

Range end problems with encoder with limited multiturn value

An error appears at the end of the physical resolu on of an encoder, when scaling is enabled, if the division of the physical boundaries (GP_U) by the programmable total resolution (TMR) is not a n integer.

$$
\mathrm{k}=\mathrm{GP} _\mathrm{U} / \mathrm{TMR} \quad \mathrm{k} \text { <> integer }
$$

At the end of the multiturn range during clockwise rota on, the encoder outputs position zero again. The same error appears immediately, if the encoder is set back to zero with a preset and the maximum mul turn value is approached after.

Example multiturn value 4096

Example with binary divider: MUR = 16384
Total position scaled $=$ (\# of rotations * MUR)

$$
\begin{aligned}
& \text { Total position } \\
& \text { Scaled }=(\# \text { of rotations* 16384 }) \\
& \text { Total position } \\
& \text { Scaled }=\left(4096^{*} 16384\right) \\
& \text { TMR }=67,108,864
\end{aligned}
$$

$\mathrm{k}=\mathrm{GP} _\mathrm{U} / \mathrm{TMR} \quad \mathrm{k}=$ integer
$k=2^{28} / 67,108,864=4 \quad->$ no position error with multiturn carry-over
Example with binary divider:

Example with decimal divider:
MUR $=65000$
TMR=65,000,000

Calculated number of MT rotations $=1000$
$\mathrm{k}=\mathrm{GP} _\mathrm{U} /$ TMR $\quad \mathrm{k}=$ integer
Error $\quad k=2^{28} / 65,000,000=4.1297$

17 Default settings on delivery

Factory set parameters on delivery.

Description	Setting	Switch
Baud rate	automatic	Not available
Node address	63	Switch setting 3Fh (63)* *At closed housings the switch is set to the preorded node address or to 0xFF for "set station address" with software
Termination	OFF	Switch setting off

Index (hex)	Name	Standard value
	Encoder Profile	
Set_prm 9	Operating Parameter	Bit 3 Scaling on
		Class 2 on /CW
Set_prm 10-13	Measuring Units per Revolution	8192 (13 Bit)
Set_prm 14-17	Total Measuring Range	33554432 (25 Bit)

The original Standard Values (Default values on delivery) can be reloaded by pressing the button on the rear when switching on (Restore parameters).

Warning:

If errors have occurred during programming of the objects and if these parameters have been saved in the EEPROM, it will not be possible to address the encoder next time it is switched on; this error can be cleared only by means of a general Reset of the encoder.

18 General Reset of the device

Please note that all programmed parameters will be lost.

- Switch the encoder off.
- Turn the encoder back on, keeping the SET-Key* pressed for approx. 3 sec . until the DIAG LED \int flashes
- Switch the device off again

When the encoder is rebooted all values will be reset to their default settings. (SSA-address is 125)
*only for devices with an external SET-Key; in other cases the device should be returned to the factory.

19 LED Monitoring during operation

red LED $=$ DIAGnostics

yellow LED = BUS
green LED $=$ PWR Bus voltage

Annunciator	LED	Description	Cause of error	Addendum
PWR OFF	No bus voltage present	No power to device Power supply unit defective	Check power supply 3	
PWR ON	Bus voltage present. Device ready for	Device is in configuration mode		
BUS OFF	Device is waiting for configuration or parameterisation	GSD module must be loaded and sent to the encoder	Observe combination with DIAG LED	
BUS ON	Connection to Master established DATA_Exchange Mode		Exchange of process data	

The individual LED annunciators can of course also occur in combinations.

[^0]
LED combinations during operation

Annunciator	LED	Description	Cause of error	Addendum
PWR+BUS ON	Data_Exchange Mode		Device will exchange position data	
Diag flashing	Red LED flashing	Over-temperature Sensor monitoring Single bit function error Sensor current monitoring	Connection to Master interrupted + additional causes of error (Diagnostic header is requested)	

Warning:
Error Display after switching on

Display	LED	Description	Cause of error	Addendum
PWR + Diag flashing		Red LED flashing 1 x short Break 1.6 sec .	Data connection fault to sensor Sensor fault	Return device to manufacturer for checking
PWR + Diag flashing		Red LED flashing 2 x short Break 1.6 sec .	Incorrect node address Profibus short-circuit Termination fault	Check Profibus

Note:

General RESET - Switching the device on with the SET Key pressed

Display	LED	Description	Cause of error	Addendum
Err flashing		Short flashing of red LED	Diagnostic mode	Device is ready for diagnostics

- Switch the encoder off.
- Turn the encoder back on, keeping the SET key* pressed for approx. 3 sec .
- The red LED flashes
- Switch the device off again

When the encoder is rebooted all values will be reset to their default settings.

20 Decimal-Hexadecimal Conversion Table

With numerical data, the decimal values are given as numerals with no affix (e.g. 1408), binary values are identified by the letter b (e.g. 1101b) and hexadecimal values with an h (e.g., 680h) after the numerals. The values shown in bold are to be entered on the rotary switches.

Example:

Left figure high order rotary switch
Right figure low order rotary switch

1							
Dez	Hex	Dez	Hex	Dez	Hex	pez	Hex
	00	32	20	64	40	96	60
1	01	33	21	65	41	97	61
2	02	34	22	66	42	98	62
3	03	35	23	67	43	99	63
4	04	36	24	68	44	100	64
5	05	37	25	69	45	101	65
6	06	38	26	70	46	102	66
7	07	39	27	71	47	103	67
8	08	40	28	72	48	104	68
9	09	41	29	73	49	105	69
10	OA	42	2A	74	4A	106	6A
11	OB	43	2B	75	4B	107	6B
12	OC	44	2 C	76	4C	108	6C
13	OD	45	2D	77	4D	109	6D
14	OE	46	2E	78	4E	110	6E
15	OF	47	2F	79	4F	111	6F
16	10	48	30	80	50	112	70
17	11	49	31	81	51	113	71
18	12	50	32	82	52	114	72
19	13	51	33	83	53	115	73
20	14	52	34	84	54	116	74
21	15	53	35	85	55	117	75
22	16	54	36	86	56	118	76
23	17	55	37	87	57	119	77
24	18	56	38	88	58	120	78
25	19	57	39	89	59	121	79
26	1A	58	3A	90	5A	122	7A
27	1B	59	3B	91	5B	123	7B
28	1C	60	3 C	92	5C	124	7C
29	1D	61	3D	93	5D	125	7D
30	1E	62	3E	94	5E	126	7E
31	1F	63	3F	95	5F	127	7F

[^0]: ${ }^{2}$ Master can be either a PLC or a second communication partner
 ${ }^{3}$ Operting voltage

